219,207pages on
this wiki
Add New Page
Discuss this page0 Share

This problem has Hartshorne Height 2; problem I.1.6 can help solve this one. No big commutative algebra results to apply, just work through the topology.


a) Use exercise I.1.6 and show if Z \subset Z' are distinct and closed in an arbitrary subset Y \subset X then  \overline{Z}, \ \overline{Z'} are distinct in X. In fact take a point of Z' that is not in Z and show this point is still not in the closure.

b) The hard part is to show there is an i such that \dim X \le \dim U_i. The idea is to take a chain or closed irreducible subsets in X, Z_0 \subset ... \subset Z_n and pick a U_i intersecting Z_0. Now show the chain still has the same length as a chain in U_i. Basically if this wasn't the case you can find two disjoint open subsets in an irreducible closed subset.

c) It can be done by constructing a simple two point topological space.

d) If Y \ne X then for every chain in Y, there is a strictly longer chain in X by taking X to be the last element of the chain.

e) Think: countably many finite dimensional noetherian topological spaces.

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Also on Fandom

Random wikia