Fandom

Scratchpad

Imaged Exoplanets

215,817pages on
this wiki
Add New Page
Discuss this page0 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Exoplanetary Scratchpad

[SysBP Img]

Not Disputed

  • Fomalhaut System - Fomalhaut dust disk is observed in unprecedented detail. It appears reminiscent of the "Eye of Sauron" from the Lord of the Rings films. A planet suspected of causing a sharp gap in the ring was suspected and imaged, becoming the first undisputed exoplanet imaged and the first planet since Neptune to be predicted prior to its discovery. The planet orbits about 115 AU and is between Neptune and 3x Jupiter's mass in an eccentric orbit. Planet b was shown to deviate slightly from its predicted path, stirring up some controversy about the planets' existance. Material surrounding the planet may have been imaged, rather than the planet itself, which some say should bump it off the directly imaged list. Also, the Hubble instrument that detected it is damaged and will not be fixed, making it unobservable for a time.
  • HR 8799 System - Hot young star system which is the only imaged and wide multiplanetary system. The 30 MY old star is the only known Gamma Doradus variable that is also a Vega-like star. The innermost is e (14.5 AU, 10 MJ), followed by d (24 AU, 10 MJ), c (38 AU, 10 MJ), and b (68 AU, 7 MJ). Inside the inner planet's orbit is an asteroid belt, while outside of the outer planet is a cometary belt (including a clump at 1:2 resonance with the outermost planet), while further yet is a huge halo extending to 2000 AU. The outer three are planets are 2-2.5 times as far as Saturn, Uranus, and Neptune are respectively, but receive similar radiation. The large planets would likely pull the system apart, leading scientists to believe the inner three planets are probably locked in a 1:2:4 orbital resonance in order to maintain stability. An inner planet is at Saturn-to-Uranus-like distances and challenges planetary formation models. Fomalhaut is the only other system where interaction between planets and dust belts can be observed. They are near the upper limits of mass to be classified as planets and could be Brown Dwarves. All three planets were later found in archived Hubble images. The middle planet became the first to have its spectrum directly measured. The spectrum confused scientists and didn't fit current formation theories. They contain carbon monoxide and are depleted in methane, which suggests they were formed in part by absorbing comets in the system. The outermost planet b has unusually thick dust clouds.
  • Beta Pictoris System - First star found to have a circumstellar disk and the source of most interstellar meteorites in the Solar System and the nearest star with a planet that has been visually detected (61 ly). Contains the youngest known exo-planet, which shows that Jupiter-like planets can form much quicker than previously believed. It is the closest-in exoplanet photographed and is at 8 AU and 7-11 Jupiter Masses and orbits in 20 years. This planet was first hinted at by studying dust disks in 2003 and first photographed in 2003, but it was not confirmed and was lost. It was imaged again in 2008, and became the first imaged exoplanet confirmed to move around its star in 2010. It has an effective temperature of 1,100 to 1,700C, showing that it is still warm and has retained much of its heat from its formation. Evidence of a planetary transit in 1981 was found in record. It was originally thought that a second planet must have caused a tilt in one of the disks, but now it known that the first planet is. Some data suggests the planet is unusually wide, perhaps evidence of a ring system around it. The planet is traveling through a relatively dust-free gap in the debris disk, and thought to be clearing it. The planet is losing momentum as it travels through the debris disk.

Unconfirmed

  • GJ 758 System - Star with a giant planet or Brown Dwarf (M betw 10-40MJ) which has been directly photographed. Reguardless of its nature, it is the first and coolest substellar companion to a sunlike star ever photographed (333 C, about as hot as Mercury). It orbits at about Neptune's distance and is still in the contraction phase. A possible third companion may have been imaged, later observations should determine if it is bound to the system or merely an object in the background.
  • TMR-1 System - A binary star in the Taurus molecular cloud with a photoed object C (potentially a planet or brown dwarf) appearing to have been ejected by the system and shown pulling some dust away from the binary. This could have been the first visually detected planet, found in 1998. Later, it was said to be a background star by its discoverer. New evidence supports that this is indeed a planet, as archive photos found the star to have brightened in the past.

Disputed

  • GQ Lupi System - A T-Tauri K-Class star that may have a massive planet with a period of about 1200 years that might be the first planet imaged.
  • 2M1207 System - A Planemo orbiting a brown dwarf 172 ly away. The planemo is possibly the first "planet" imaged. A disk around the Brown Dwarf was known, but recently a disk around the Planemo was also detected. It is believed to be glowing hot from a recent collision with a Uranus sized planet. The planemo probably didn't form the way planets do, but rather, in the same manner as binary stars do.
  • SCR 1845 System - Template:SCR 1845 System
  • AB Pic System - Template:AB Pic System
  • White Dwarf Planetary System - An unnamed white dwarf star with a potential planet that may have been directly imaged by Hubble, which would make it the first planet imaged.
  • 1RXS J160929.1-210524 System - Contains first exoplanet (full name 1RXS J160929.1-210524) imaged around a sun-like star, photographed in 2008 and confirmed to orbit star in 2010. The planet's very large distance from the star 330 AU causes problems for planetary formation theories. Some liken it to an unbalanced binary star system where one component gobbled up the vast majority of the dust. It has about 8 times Jupiter's mass and 11 times Neptune's distance. It could be a new type of sub-stellar object between a planet and a Brown Dwarf. First exoplanet to have its spectrum taken, which revealed evidence of water, carbon monoxide, and hydrogen. Its star is young enough (5 MY) so that the planet has not had enough time to cool (1,500 C) and thus detectable.


Feature Articles

See 2M1207 System ("Brown Dwarf and Child"), 1RXS J160929.1-210524 System ("Far Out Planet"), HR 8799 System ("Planetary Family", "Family of Four", and "Seeing in the Future"), Fomalhaut System ("A Controversial Case"), Beta Pictoris System ("Inner Planet" and "Going Around")

Also on Fandom

Random wikia