Super Earths

215,909pages on
this wiki
Add New Page
Discuss this page0 Share

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Exoplanetary Scratchpad

[SysBP Img]

"Super Earths" are planets with greater mass than Earth, but less that 10 times as massive. They can be rocky or gaseous.

Hot Super Earths

Transit Detected

  • CoRoT-Exo-7 System - A sunlike star about 500 light years away with two Hot Super Earths (and possibly a third), including the first detected transiting Super-Earth. It a diameter about twice that of the Earth. First exoplanet with evidence of a solid surface and does not possess a thick atmosphere. Because its star is active, its mass is somewhat uncertain (2.3 to 8.5 ME), which makes it unclear if the planet actually has a solid surface. Also the closest exoplanet to its star known and has the smallest orbit period (0.85 Earth Days). Likely the first Super-Io discovered (due to slight eccentricity) and the first gas giant remnant core found. Has temperature of 1000-1500C. Planet c is a larger Neptunian orbiting further away and does not transit.
  • Kepler-10 System - An old sun-like star with two rocky Hot Super-Earths, b and a slightly larger outer c that needed to be confirmed with help of Spitzer. B is an airless Super-Earth covered in an ocean of magma with a high density, likely metallic. Its high density means its almost entirely composed of Silicate and metals. Has smallest measured diameter of any exoplanet (40% more than Earth, 4.5 Earth's mass, and nicknamed Vulcan by scientists) and is the first rocky exoplanet found by Kepler. Its daytime temperature is 1,500C, well over the melting point of Silicate and nearly that of Iron. The planet is glowing hot and lava pieces fly away from it like a cometary tail. Planet is similar to Corot-7b, but is around a more quiet star, making measurements more reliable, and thus this planet is the first certainly rocky planet discovered. Has circular orbit, so not likely a super-Io like that planet, instead considered a super-Mercury.
  • 55 Cancri System - Wide binary star consisting of a sun-like primary (A) and a red-dwarf secondary (B) separated by 1,100 AU, 41 light years away. Star A contains five exoplanets, the first system found with this many. It has three tightly packed eccentric planets close in to the star, including planet e (hot Super Earth/Neptunian), b (hot Jupiter), and c (hot Saturn). Planet e was the first Neptunian discovered. It was later found to be the shortest-period planet discovered (18 hours) and to transit. The planet has about half of Neptune's mass, but is Earth-like in size and density (2.17 Earth Radius). It is composed 70% of rock and the outer 30% is likely an ocean of super-critical water (between a gas and liquid state) that is 3000km thick. This is the hottest and densest super-Earth and the is the most watery planet found to date. It likely possesses a thick atmosphere of CO and CO2. The brightness of the star (also closest known to transit and only known naked eye star to do so) makes it more easily studied than other hot super Earths. Planet f is a very eccentric Saturnian in the habitable zone. Planet d is a super jovian at Jupiter-like distances, which was the first found at true Jupiter distances and still the exoplanet discovered with dopplar spectrometry with the largest known semi-major axis. The distant outer star causes planet d's axis to flip on its axis every million years. Planet d in turn causes the other planets to flip, including its star. The axis tilt of transiting planet e should be determined at some point. "Bode's law" predicts four undiscovered planets.

Dopplar Spectrometry Only

  • Gliese 876 System - Very nearby quadruple planet system and the first Red Dwarf found to have planets. The innermost planet (d) was the first found rocky planet around a normal star (the first true Super-Earth, at epistellar distances). The outer three planets c (Saturnian), b (Jovian), and e (Neptunian) are in 1:2:4 (30d/60d/120d) resonance (the exoplanet resonance and first triple-resonant planets discovered). The outermost planet has a Mercury-like orbit however it is very much colder than Mercury. Gliese 876 e actually receives only slightly more warmth from Gliese 876 than Jupiter does from our Sun. Planet b is second discovered by ELODIE after 51 Peg b and the second to have its mass exactly measured and the first to have done so by astrometry.
  • HD 156668 System - Contains a super-Earth that is second smallest exoplanet found with the dopplar method (after Gliese 581 e, 4 ME) at time of its discovery by Caltech astronomers at Mauna Kea. It had the smallest light amplitude detected using the dopplar spectrometry method. Found because of improved understanding of stellar phenomena that can mimic a planet.
  • 61 Virginis System - A system containing a 5.1 ME Hot Super-Earth b (which is hot enough to have emissions on its night side) and two other further out Neptunians (c and d and possibly a fourth), and a Kuiper Belt around a very Sun-like star only 28 light years away. All planets would fit inside Venus' orbit and have high eccentricities, especially the outermost one. This is the closest planetary system around a G-type star, which is one of the only very sun-like stars visible to the naked eye. It is the first non-borderline G-class main sequence star found to have a super-Earth.
  • HD 1461 System - A nearby (76 ly) yellow dwarf star with a hot super-Earth and possibly a Neptunian and a Saturnian further out. It and 61 Virginis are the first sunlike stars found to have Hot SuperEarths.
  • HD 215497 System - Contains one of four super-Earths announced by the HARPs team in October 2009.
  • Gliese 433 System - Contains one of four super-Earths announced by the HARPs team in October 2009.
  • HD 7924 System - Nearby star with a super-Earth.

Temperate Super Earths

Transit Detected

  • GJ 1214 System - A red dwarf system containing the first exoplanet discovered by the MEarth project, which seeks to detect transiting Earth-like planets around nearby red dwarves, and the second transiting super-Earth. The planet is the first of a new class of planets with low mass and low density. It is between Earth and Neptune in radius and it could be a small Neptunian, a terrestrial with an outgassed atmosphere, or a water world. Its featureless spectrum (the first Super Earth atmosphere ever studied) suggests a heavy atmosphere choked with water steam or one with thick water clouds above it, making viewing the surface impossible (further studies should resolve this). It may be the coolest transiting planet detected. Its close proximity (under 50 ly) assures promising future observation.

Doppar Spectrometry Only

  • HD 69830 System - First planetary system found that does not have a Jupiter-sized planet around a normal star (K0 spectrum). Contains 3 Neptunians and the first discovered asteroid belt that is like the size and age as the Sun's. The debris from this belt that was detected was from the breakup of an asteroid, is 20 times as massive as our own, and would cause zodiacal lights 1000 times brighter than we see from Earth. The smallest and outermost planet may be a 10 ME super Earth, is within the habitable zone, and is an inner shepherd for the asteroid belt. Halo 3 features a fictitious moon around this planet.
  • Gliese 581 System - Small nearby Red Dwarf with six planets in tight circular orbits and a distant Kuiper belt where many comets orbit. Gliese 581 e was, at the time of its discovery, the smallest known dopplar-detected exoplanet and a super-Mercury, b is a hot-Neptunian, c is a super-Venus and the first detected in the habitable zone (initially heralded as habitable, but later thought too hot due to the greenhouse effect), g is a super-Earth and the first detected in the middle of the HZ (and is highly controversial, having many doubters and defenders), d is a super-Earth on the outer edge of the HZ which could support liquid water (due to its presumably large atmospheric pressure and carbon dioxide), and f (its existence is also highly controversial) is a cold super-Earth. Much further out, from 25 ± 12 AU to more than 60 AU, there is a cold debris disk reminiscent of the Kuiper belt but with 10 times more comets than the one in our solar system. The star is not very active.
  • Gliese 667 System- A triple star system 23 light years away, consisting of binary of orange dwarf stars about 12 AU apart (ranging from 5 to 20 AU), around which a distant red Dwarf C orbits (ranging from 56 to 215 AU) and the nearest multiple star system known to harbor a planet. A temperate super Earth planet (5.7 ME) discovered around star C was the poster child for an announcement of 32 exoplanets discovered by European astronomers working on the HARPs project and brought the total number of exoplanets to near 400.
  • HD 181433 System - A triple planet system around an Orange dwarf star. Innermost planet is a super-Earth at Venus-like distances, without two Jovians orbiting further out. Super Earth was announced at the same time as the triple-Super-Earth system HD 40307 with the HARPS project.
  • HD 40307 System - A bright orange dwarf star that lies 42 light years away, which is of spectral type K2.5v and has a temperature of 5000 Kelvin. It has 6 super-Earths in orbit. They each have 4.0, 6.6, 9.5, 3.5, 5.2 and 7.1 times as much mass as Earth and periods of 4.3, 9.6, 20.4, 34.6, 51.8 and 197.8 days, respectively. Dynamic studies suggest that the planets are smaller versions of Neptune, rather than larger versions of Earth. The sixth planet out from the star orbits within the habitable zone.

Icy Super Earths

  • OGLE-2005-BLG-390L System - Has first discovered Icy Super Earth, which was detected via Micro-lensing tens of thousands of light years away and was the smallest known exoplanet around a normal star at the time.
  • MOA-2007-BLG-192L System - A very dim Red Dwarf star (once thought to be a potential Brown Dwarf) around which the smallest known exoplanet around a normal star (1.4 ME, once thought to be 3.3 ME) orbits. Orbiting at Venus-like distances, the planet is likely an icy frozen super-Earth.

Pulsar Super Earths

  • PSR B1257+12 System - The first extrasolar system confirmed and one of the only planetary systems known around a pulsar. Has three rocky planets that orbit closer than Venus. The innermost has a Moon-like mass, while the next two out are Super Earths. May also have an outer "comet" sized body, the first sub-planetary object detected and possibly a representative of a mini "kuiper belt" at asteroid belt like distance.


Super Earths Will Have Plate Tectonics

Also on Fandom

Random wikia