Fandom

Scratchpad

Vector question

215,808pages on
this wiki
Add New Page
Discuss this page0 Share

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

First we take the derivative of the vector using the product rule

 \frac{\partial}{\partial t}(e^{at}\cos{bt},e^{at}\sin{bt},e^{at}) = (ae^{at}\cos{bt} - be^{at}\sin{bt},ae^{at}\sin{bt}+be^{at}\cos{bt},ae^{at})

Now we will find the magnitude of the result

We begin by squaring the i terms.

(ae^{at}\cos{bt} - be^{at}\sin{bt})(ae^{at}\cos{bt} - be^{at}\sin{bt}) = a^2e^{2at}\cos^2{bt} - 2abe^{2at}\sin{bt}\cos{bt}+b^2e^{2at}\sin^2{bt}\,

And now we square the j terms.

(ae^{at}\sin{bt}+be^{at}\cos{bt})(ae^{at}\sin{bt}+be^{at}\cos{bt}) = a^2e^{2at}\sin^2{bt}+2abe^{2at}\sin{bt}\cos{bt}+b^2e^{2at}\cos^2{bt}\,

Now squaring the k terms give

 a^2e^{2at}\,

Now we add all three results and use the identity  \sin^2 x + \cos^2 x = 1 \,

 \sqrt{a^2e^{2at} + b^2e^{2at} + a^2e^{2at}} = \sqrt{e^{2at}(2a^2+b^2)} = \sqrt{e^{2at}}\sqrt{2a^2+b^2}

now we integrate the result

 \sqrt{2a^2+b^2}\int_0^t \sqrt{e^{2av}} \partial v = \frac{\sqrt{2a^2+b^2}}{a} \sqrt{e^{2at}} = s(t)

now we isolate for t.

 s = \frac{\sqrt{2a^2+b^2}}{a}\sqrt{e^{2at}}

 s^2 = \frac{2a^2+b^2}{a^2}e^{2at}

 2 \ln{s} = \ln{\frac{2a^2+b^2}{a^2}}2at

 t = \frac{1}{a}\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}

And finally we plug this result into the original equation.

 x(t) = e^{\Bigg(\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}\cos{b\Bigg(\frac{1}{a}\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}i, e^{\Bigg(\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}\sin{b\Bigg(\frac{1}{a}\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}j,e^{\Bigg(\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}k

But that's ugly and hard to read so here's the ln of the result

\ln{x(t)} =  \Bigg(\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg) \ln{\Bigg(\cos{b\Bigg(\frac{1}{a}\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}}\Bigg)
i, \Bigg(\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)\ln{\Bigg(\sin{b\Bigg(\frac{1}{a}\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)}}\Bigg)
j, \Bigg(\frac{\ln{s}}{\ln{\frac{2a^2+b^2}{a^2}}}\Bigg)k



Also on Fandom

Random wikia